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Space-fractional advection-diffusion and reflective boundary condition
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Anomalous diffusive transport arises in a large diversity of disordered media. Stochastic formulations in
terms of continuous time random walks (CTRWs) with transition probability densities showing space- and/or
time-diverging moments were developed to account for anomalous behaviors. A broad class of CTRWs was
shown to correspond, on the macroscopic scale, to advection-diffusion equations involving derivatives of
noninteger order. In particular, CTRWs with Lévy distribution of jumps and finite mean waiting time lead to a
space-fractional equation that accounts for superdiffusion and involves a nonlocal integral-differential operator.
Within this framework, we analyze the evolution of particles performing symmetric Lévy flights with respect
to a fluid moving at uniform speed v. The particles are restricted to a semi-infinite domain limited by a
reflective barrier. We show that the introduction of the boundary condition induces a modification in the kernel
of the nonlocal operator. Thus, the macroscopic space-fractional advection-diffusion equation obtained is

different from that in an infinite medium.
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I. INTRODUCTION

Diffusion processes not following Gaussian statistics are
observed in various complex systems [1-8]. Subdiffusive
and superdiffusive phenomena imply rates of spreading, re-
spectively smaller or greater than the Fickian rate. One of the
most efficient models for diffusive transport is based on the
continuous time random walk (CTRW) approach [7]. De-
pending on the underlying stochastic kinetics considered,
subdiffusive, normal, superdiffusive, or mixed effects occur.

When no boundary condition is imposed, a wide class of
uncoupled and unbiased CTRW models yields fractional dif-
fusion equations in the coarse-grained limit [9,10].

Time-fractional diffusion [11] accounts for subdiffusive
effects and comes from broad waiting time distributions,
whereas space-fractional diffusion arises from wide jump
distributions [12,13]. Allowing both long rests and long
jumps yields space-time-fractional diffusion equations
[7,14,15]. Space-fractional diffusion with advection in an in-
finite medium was addressed in [16,17] for Lévy flights.

CTRWs are point processes with reward [9,10,18]. The
point process is a sequence of independent identically dis-
tributed (i.i.d.) positive random variables T, representing
waiting or survival times between successive events. Starting
at time r=0, the nth event occurs at time #,=2",7;. The
rewards in turn are random variables X; representing succes-
sive one-dimensional jumps. Considering the spreading of
particles within a fluid moving at constant speed v in an
infinite medium, a particle initially at position x, at time 7
=0 is located in
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at time ¢. Here N(r) =max{n/t,<t} is the number of jumps a
tagged particle performs during time interval [0,¢]. Then,
Eﬁ({)Xi is the position with respect to the moving frame
whose origin travels distance vt during [0,7].

For uncoupled CTRWs, the X; are independent of the 7.
In an infinite medium, and in the absence of nonuniform
force fields, it is reasonable to assume that the X; also are
i.id. as in [9,10,18].

Letting / and 7, respectively, be characteristic space and
time scales for X; and T, the coarse-grained evolution equa-
tion for the concentration of particles is obtained in the limit
(1,79 —0.

In the absence of advection, and when the jump lengths X;
are distributed according to an a-stable symmetric Lévy law
[19], with moreover the survival probability being of Mittag-
Leffler type with index [, the macroscopic evolution obeys
the following space-time-fractional variant of the standard
diffusion equation [9,10]:

&fgc(x,t) =KVic(x,t) (2)

with (*/Th=K, Be(0,1], and ae(0,2]. If, moreover a
€ (1,2], Eq. (2) can be interpreted as a generalization of
Fick’s diffusion law [20]. In the fractional variant, the local
rate of the concentration is replaced by a time derivative of
fractional order B e (0,1), and the divergence of the concen-
tration gradient by a Riesz-Feller derivative of order. In Fou-
rier coordinates, the symmetric Riesz-Feller derivative of or-
der a € (0,2) is defined by V&=—|k|*[13]. In real space, and
for a e (1,2), it satisfies
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When a=2, the right-hand side of Eq. (3) is the usual La-
placian.

The only survival probability distribution leading to a lo-
cal time derivative (8=1) is the exponential distribution with
finite mean waiting time 7. In the latter case, and if we
further constrain « to the interval (0,2), particles perform
Lévy flights. Brownian motions in turn are limiting cases of
Lévy flights. They correspond to =2, and are the only Lévy
flights with finite variance. Lévy flights with a € (0, 1] have,
in addition, an infinite mean.

For v+#0, the macroscopic limit of symmetric Lévy
flights is a space-fractional advection-diffusion equation,
with the advection term unchanged with respect to the clas-
sical advection-diffusion equation [16,17]. Space-fractional
advection-diffusion equations have been successfully applied
to model the evolution of tracers in heterogeneous porous
media [21,22].

When considering experimental devices and attempting to
check models for mass transport in a given finite medium,
we need to consider boundary conditions. Lévy statistics for
the jump length account for long-range interactions on the
small scale and correspond to nonlocal (in space) operators
on the large scale. The presence of a boundary may modify
the nonlocal spatial operator [23]. Boundary conditions can-
not be uncoupled from the fractional partial differential equa-
tion as when the order of the space derivative is an integer
[24]. The case of diffusion in the presence of an absorbing
boundary was considered in [25], where an expression was
obtained for the propagator of Lévy flights.

Here, we model the influence of a semipermeable wall
within the framework of space-fractional partial differential
equations, with and without advection. The wall is permeable
to the fluid and impermeable to the tracer.

We first develop a CTRW model for particles performing
symmetric Lévy flights in a semi-infinite medium limited by
a reflective boundary, with and without advection. We as-
sume that the particles arriving at the boundary are bounced
back as in elastic collisions.

Then, we derive the evolution equations in the coarse-
grained limit. We obtain space-fractional models involving a
nonlocal operator, very similar to a Riesz-Feller derivative
with respect to space, except that the kernel takes account of
the boundary condition.

Finally, a finite difference method, inspired by [13-15],
allows us to numerically solve the macroscopic model. Nu-
merical and analytical solutions when available are checked
against direct Monte Carlo simulations.

II. INFLUENCE OF A WALL ON THE MICROSCOPIC
LEVEL

The concentration of particles performing a CTRW satis-
fies a generalized master equation [4], which is an integral
equation resuming the CTRW itself. We will see that it is
sensitive to the presence of a boundary.
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A. The underlying random walk in free space

Brownian motion is a CTRW with a Gaussian probability
distribution function (PDF) for the jump length. Instead, we
consider a symmetric a-stable Lévy law, which is more gen-
eral and allows for long-range correlations. In porous media,
spatial correlations may arise from heterogeneous free paths
for moving particles due to unequal clustering of solid matter
with coherence lengths varying over many length scales (see
for instance [26]). Then, highly disordered and unsteady lo-
cal fluid flows carry particles of tracer whose motion is rep-
resented by a succession of jumps. We further assume that
jumps may be performed with respect to a frame moving at
speed v (e.g., within a fluid moving with mean velocity v).
Since we aim at describing the transport of matter in situa-
tions bridging between diffusion and propagation, we pay
special attention to values of a € (1,2) focusing on the in-
fluence of a boundary condition.

1. With v=0

In an infinite domain, consider particles being at x at the
instant =0, and performing an uncoupled CTRW, which
may be influenced by the environment so that the length of
the nth jump does depend on the place it starts from. The
spatial dependence of jumps with the location may be due to
a nonuniform force field as in [27].

Assuming that the process is Markovian, the probability
distribution functions of waiting times 7; between successive
jumps are exponential of the form ¢To(t)=e‘” "/ 74. Then, the
probability P(x,#)dx of finding a particle in [x,x+dx] at in-
stant ¢ satisfies the generalized master equation

P(x,1) =6, (x) f b i (t')dt'

o0 1
+ f f P! 1) A (v Y (1 = )i '
—o Jt'=0

(4)

In Eq. (4), Aj(x,x")dx is the probability that a particle jump-
ing from x’ arrives in [x,x+dx].

In the absence of nonuniform force fields, there exists a
random variable X such that the X; are distributed as [X. The
parameter / can be thought of as being the length scale of the
microscopic motion. Assuming that the PDF ¢,(-) of the ran-
dom variable X is a symmetric a-stable Lévy law p,(-,0) of
order a € (0,2], the resulting transition PDF between loca-
tions x" and x is A;(x,x")=¢(x—x") with ¢;(X)=¢(X/1)/]
and @1(X) :pa(xs O)

Assuming that a force field constrains particles to lie in
the half space [0, +%), the generalized master equation in-
volves now an integral over [0, +%) instead of (—o°,+0).
Hence, it takes the form

P(x,1) = 5, (x) f i, (t')dt'

+ f - J P! 1) A (v Y (1 = )i '
0 t'=0
(5)
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2. Withv#0

Advection modifies the transition probability density,
which in general is assumed to remain translation invariant
in a free space. It then issues in a not too complicated cou-
pling between time and space [17]. The PDF for a particle to
travel from x’ to x between instants ¢ and ¢ becomes

Ty @i =) (1= 1) (6)

with T, denoting the translation defined by T,f(x)=f(x—a).

B. Boundary condition at x=0

Incorporating the boundary condition into the random
walk modifies the transition PDF A,(x,x’), which summa-
rizes the interplay between the boundary condition and the
supposed kinetics of particles. Indeed, for walkers con-
strained on the right-hand side (x>0) of an elastic barrier
(x=0), the transition probability density cannot be translation
invariant. The wall is viewed as a nonuniform (in space)
force field applied to the particles. In a porous medium, such
a boundary may represent a wall permeable to the fluid, but
impermeable to the tracer.

1. With v=0

We focus on particles whose motion is exactly as if they
were performing a CTRW of characteristic length scale / in a
free space with no nonuniform force field, except when they
hit the wall. To be more precise, we still bear in mind a point
process with rewards X; as above, but the length of the nth
jump, when starting from x’, is X, only if x’ +X,, is positive.
If this expression is negative, we assume that there is no
energy exchange with the wall (located in x=0), hence that
the jump ends at —(x'+X,,).

Since a jump from x’ to x (with positively valued x and
x") either is direct or bounces on the wall, we have

Ajx.x") = @lx = x") + (- x = x'). )

Hence, inserting a reflective boundary condition that con-
strains particles to the domain [0, +°) modifies the transition
PDF A,(x,x'). The analysis can be worked out from a dy-
namical point of view in particular cases, such as the one
detailed in Appendix A, where small scale motions starting
and ending on a horizontal plane, are due to a uniform ver-
tical force field and to initial impulses whose horizontal com-
ponent is distributed according to an a-stable Lévy law.

2. With v#0

A particle that hits the wall flies from x’ to x—v(z—1¢'), if
and only if it would yield a jump from x’ to —x+v(r—¢") in a
free space.

Let us consider a particle performing a quasi-
instantaneous jump, starting from x’ between instants ¢’ and
t'+dt', then being advected until instant 7. It will, at that
time, have abscissa x if the jump moved it to x—v(r—1t"),
which is impossible for x<wv(z—t'). Hence, the probability
density to travel from x’ to x during [¢',7] with the last jump
having occurred at instant ¢ is H(x—v(t—t"))A(x—v(t
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—1"),x"), (t=1"), with A; satisfying Eq. (7). In the latter
expression, H represents the Heaviside step function.
Methods developed for infinite media following the lines
of [2,3] adapt here to the semi-infinite medium bounded by
the reflective boundary condition at x=0. Basic tools for that
are Fourier and Laplace transforms f(k) and g(u) of func-
tions f and g of xeR, and e R*. For f‘(k) we take the

definition f(k)=J*Ze*f(x)dx, as in [28].

III. ON THE MACROSCOPIC LEVEL IN AN INFINITE
MEDIUM

For particles performing CTRWs of the above-described
type in an infinite medium, free of any force field, the evo-
lution of the macroscopic concentration P(x,7) was studied
in [9-12,16,17]. Even if different points of view were
adopted, the above-cited authors obtained similar equations.

We consider here the influence of a reflective boundary
when particles perform Lévy flights for small values of / and
7, satisfying [%/ 7y=K. This framework will hereafter be ref-
erenced to as the coarse-grained limit.

The probability P(x,7) for particles to be in (x,7) with
respect to a frame moving at speed v, satisfies [16,17] the
generalized master equation

t
P(x,1) =f j P(x’,t’)TU(,_t,)A,(x,x’)l,bTO(I—t')dt'dx’
RY1t'=0

+00
48, ) J i (1)t
t
with A;=¢,. In Fourier-Laplace coordinates [17] we obtain

1= $(0) i (u— ivk)
(= i0K)[1 = @0 P (= i0B)]

and hence, in physical variables, we obtain

Plk,u) = &0

d,P(x,t) +v V P(x,1) = KV{P(x,1) (8)

with the symmetric Riesz-Feller derivative V{ on the right-
hand side. The latter result was obtained by [16,17] for «
€ (1,2]. For a€(0,1], Eq. (3) is no longer applicable, but
Eq. (8) is still valid with V¢ in physical variables involving a
derivative of order 1 and a convolution with a different ker-
nel (see Ref. [13]).

The method, developed in [16,17] following the results of
[2,3], can be applied to the semi-infinite medium bounded by
the reflective boundary condition at x=0. It relies heavily on
the Fourier-Laplace transform of a function & of x and 7, here

denoted by hk,u).

IV. INFLUENCE OF A REFLECTIVE BARRIER ON THE
MACROSCOPIC LEVEL

That the case with v=0 is simpler and helps in preparing
tools, hereafter used for more general situations, is not a
surprise.
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A. With v=0

The method pioneered in [2,3,12] consists in transforming
the generalized master equation into compact form in
Fourier-Laplace variables, in order to see the Fourier-
Laplace transform of the time derivative of P(x,), and also a
Fourier convolution involving P. Since here P is defined on
a half space, we need some appropriate extension in order to
obtain Fourier convolutions. We focus on initial conditions in
the form of a Dirac distribution located at x, (with x,>0),
from which we can deduce all the other (initial) possibilities.
Particles that are at x at instant ¢ either came from elsewhere,
or stayed there right from the start. Since the probability of
performing no jump before 7 is 1— || gw,o(t’)dt’, the probabil-
ity P(x,t) of finding a particle in x>0 at instant 7 satisfies
the following generalized master equation [2,3,12]:

P(x,z>=6xo<x)(1— | w70<r'>dr')+ [ [ pwsnec
0 x'=0 J1'=0
—x")+ @(—x— x')]wfo(t —t")dt'dx' .

Since ¢, is even, the integral with respect to x’ is a convo-
lution if we consider the even (with respect to x) extension
P* of P, defined by P"(x,)=P(x,?) for x>0 and P"(x,?)
=P(-x,t) for x<0. With this notation, the generalized mas-
ter equation is equivalent to

P*(x,t) = f f P (x", ") (x - x’)t,bTO(t —1')dt' dx'
RY=0
+18,(1) + 8., (9] f (1)t

for x in R. Then, following [12] the Fourier-Laplace trans-
form P* satisfies

1- $0) i, (u)

P ) = P () 1K) iy () + (0 4 ik,

hence uP*~2 cos kxo=(e ™" ~1)75' P*(k,u). For fixed k and
u, when [ and 7, tend to zero while [*/7,=K [9,10], we

obtain that P*“(k,u) tends to a limit which satisfies

uP" (k,u) = 2 cos kx = — K|k|*P" (k,u) 9)

for a € (0,2]. Since P*/2 can be thought of as being a PDF,
in physical space P” satisfies Eq. (8), with v=0.

For a=2, Eq. (9) yields the classical diffusion equation
3,P(x,t)=KV?P(x,t). However, for a € (0,2), the concentra-
tion P evolves, in the diffusive limit, according to

9,P(x,1) = KV{,,1P(x.1), (10)

with V¥, , being defined by
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-1 +*
ve P(x,f)=K (92J —y|t-e
wrtP ) = K e T — ) y=0[|x ol
+ (x+y)' 7P (y,0)dy (11)

for @e (1,2). As in free space, a different expression holds
for a e (0,1].

In Eq. (10), the Riesz-Feller derivative of order «
€ (1,2), has been replaced by the slightly different nonlocal
operator V¢, which takes account of the reflective bound-
ary condition. The definitions of V{ and V{, , differ in the
kernels that are, respectively, proportional to |x—y|'"* and
|x—y['=%+(x+y)'~% Both kernels are not very different when
x+y is large. Nevertheless, omitting (x+y)'~* would yield a
nonconservative model. Indeed, solutions obtained without
this term would have a decreasing integral over x, whereas
the total amount of matter over the accessible domain should
be constant. For solutions to Eq. (10), the integral

o P(x,t)dx is constant, since it is % [P (x,f)dx, with P”
solving Eq. (8).

The method can still be adapted when the advection speed

v is different from zero.

B. With v #0

When v # 0, being at x at time ¢ without having performed
any jump between instants ¢ and f now means having been
advected from x—v(r—t') to x.

Moreover, in a semi-infinite medium limited by a reflec-
tive barrier in x=0, it is impossible to be in x>0 at time ¢
after having a jump at ', if x—v(¢r—1") is negative. Therefore,
the generalized master equation for x>0 is

P(x,1) = 8, 1,(x) f r, ()1’ + f f P(x',1")H(x
' x>0 Y 1'=0

-v(t- t’))Tv(,_,,)A,(x,x’)wTO(t —t")dt' dx’' (12)

with A; satisfying Eq. (7). In Appendix B, Eq. (12) is shown
to be equivalent to

P (x,0) = [ 8 (%) + 8y ()] f b g, (t)dt’

+ f %O(f - t,)(TU(t—t’)(H[P**F(Pl])
t'=0

+T_y{(1 = B[P s p ) (x,2")dt',  (13)

which involves convolutions. We show hereafter that Eq.
(13) is equivalent to a nonlocal partial differential equation
for P*(x,1), which is, in the coarse-grained limit, identical to
Eq. (8).

Since the Laplace transform of [ f“(/fTO(t')dt’ is u'[1

—IZTO(M)], we set
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1- lzro(u + ivk)

1- lzro(u —ivk)
+

2A4(k,u) = - :
u—ivk u+ivk
_ 27(1 + mou)
T (1+ Tou)’ + 7(2)k202
and
1- tzfo(u —ivk) 1- tzfo(u +ivk)
2lB(k,M) = . - .
u—ivk u+ ivk
2iThkv
T (L+ )+ Tok*v?’
Then, the Laplace-Fourier transform of [§ yror(X)

5_X0_v,(x)]f:'°°¢,0(t’)dt’ is 2A cos kxo—2B sin kx,. In Ap-
pendix B, the Laplace-Fourier transform of the second sum-
mand in the right-hand side of Eq. (13) is shown to be

D (-4 i0K) X Fl (P X @) (s0) + T (1t = i0K)

X (1= H)#p(P" X ) (k.u).
Hence we set

- 2ik7'01)
(1+ TOM)2 + 7'(2)](202

Clk,u) =, (u + ivk) = i (u— ivk) =

and
D(k,u)=1-D'(k,u)

Gy (1 + i) + P (1
2

ivk)]

B (1 + 7ou)(1 + 7ou — eI 7§k2u2)
a (1+ 7'01,t)2 + 7'20/(202
Since the Fourier transform of H is 6/2—1/(ik), the Fourier-

Laplace transform of the right-hand side of Eq. (13) is

2A cos kxo— 2B sin kxy + D' P “(k, u)+Cl(cp1P )* o 1(1{ u).

Hence, in Fourier-Laplace variables, Eq. (13) is equivalent to
DP*(k,u) = 2A cos kx, — 2B sin kxy + C{(@,P T }(k u).

Recalling that the Fourier-Laplace transform of 4,P" is

wb* (k1) —2 cos kxo, we see that Eq. (13) is equivalent to

Au-D)\ =, 2B
9P (ko) = (”—)P (k) = = =sim ke,

C . 1

+—| (P )kp |- 14
A [(QDI ) F k:| (14)
With #; denoting Laplace convolution, the right-hand side of
Eq. (14) is a sum of three terms. For « € (1,2), and under the
condition [“/7y=K, they are, respectively, equivalent to
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KV?P*(x,t) (see Appendix C), the Fourier-Laplace trans-
forms of

20[ @y, P 18(x) *L%O,
(15)

—-v Sgn(x)[gol*FaxP*]*Ll//TO -

and of a vanishing small quantity (when [/ and 7, are small).
In this limit, the expression in Eq. (15) tends to

—v sgn(x)[3,P"(x,1)] - 2v 9.P"(x,1) &(x)
=—v d,[sgn(x)P"(x,1)].

Hence, for every fixed value of (x,7) in R X R*—{(0,0)} the
Fourier-Laplace transform of

3P (x,t) +v d [sgn(x) P (x,0)] - KV;“P*(y,t)

tends to zero with / and 7, under the condition /*/7y=K, so
that P” satisfies Eq. (8). For =2, the derivative V% is o‘liz and
we readily obtain the classical advection-diffusion equation.
When « is strictly between 1 and 2, P(x,t) evolves according
to

GP(x,1) +v 3. P(x,1) = KV, 1P(x,1) (16)

for x>0, with V', , being defined by Eq. (11). In the right-
hand side of Eq. (16), the nonlocal operator is as in Eq. (10).
The latter equation finally is only a particular case. The local
advection term v d, is not affected by the boundary condition.

Hence, in the diffusive limit, Eq. (16) rules the evolution
of the probability density of finding a particle at position x at
time ¢ performing a Lévy flight. The result also can be ob-
tained, and illustrated numerically, by comparing solutions to
Eq. (16) and direct Monte Carlo simulations.

V. NUMERICAL DISCUSSION OF EQUATION (16)

After necessary details concerning a numerical scheme
allowing us to discretize Eq. (16), we compare the numerical
solutions with direct Monte Carlo simulations.

A. Numerical scheme

In Sec. IV we proved that, when P(x,1) solves Eq. (16) in
the half space x>0, the even extension P" solves Eq. (8) in
the real line. Therefore, numerical schemes available for Eq.
(8) can be adapted to Eq. (16).

For a e (1,2), according to [14,15] an efficient discreti-
zation of the Riesz-Feller derivative VfP*, with space mesh
h, is

(VP ) = 2( 1) ( >(P*nl+k+Pl+l K-

(17)

2 h“|cos(a7r/2)|

Here, f-fq denotes the discretized value at point jh at instant
nAt of function f. For v=0, the explicit scheme based upon
Eq. (17) was shown in [14,15] to converge to solutions to Eq.
(8) for time steps At<h®cos ma/2|/(Ka). For ae(0,1],
Eq. (17) has to be modified.

An accurate discretization for V¢, 4 is
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[

> (- 1)k(Z><Pg_Hk

1
Va P)l=—————
( P); 2 h*cos(am/2)|i%

+Pﬁ‘+l—k\)’ (18)

with &; ;» denoting Kronecker’s symbol. In order to match
accuracy requirements and to avoid instabilities, the three-
point scheme of order 2

n v 7 i i
(W3,P)} = (=3P} + 4P, = P},o)

is a good compromise for the advection term v 4, P.

Using the above discretizations, we finally obtain for the
space derivatives involved in Eq. (16) the following explicit
scheme:

P =PI+ K ANV, 0 P)} + At(v 3,P)}.

A stability analysis based on von Neumann’s method
indicates  that  the  convergence  condition At
<h%cos ma/2|/(Ka) is not enough when v#0 in a half
space. It must be complemented by 24! <v S(a), as in [29].
Here, for K=1, S is defined by S(a)=[6+3a(a—1)-a(a
—-1)(2-a)]/30|cos(am/2)|.

The numerical tool previously described allows us to
measure the importance of the correction proposed for the
kernel of the Riez-Feller derivative in the presence of a re-
flective barrier. We compare solutions to Eq. (16) and Eq. (8)
for K=1, @=1.5, v=0, for =3 [Fig. 1(a)] and for =10 [Fig.
1(b)]. As observed, not taking into account the influence of
the wall yields inexact values. The effect of the boundary is
mainly visible between the wall and the support of the initial
condition. Advection decreases the difference between solu-
tions to Eq. (16) and Eq. (8). This is not a surprise, since
when advection is present there are fewer particles near the
wall as time increases.

Since the proof [14,15] that the scheme converges only
holds for v=0, and also in order to obtain a numerical proof
of Eq. (16), we carried out comparisons with Monte Carlo
simulations.

B. Direct simulations of Lévy flights with a reflective wall

We proved in Sec. IV that when [*/7y=K and in the
coarse-grained limit, the density P(x,f) of particles perform-
ing Lévy flights satisfies Eq. (16). Hence, the normalized
frequency distribution of Q particles initially at x, and per-
forming Lévy flights tends to the continuous solution for
large Q.

A theorem due to Zolotarev and detailed in [30,31]
states that for ae(1,2), the random variable Z
=(sin a /cos 6%)[cos(a—1)0/ W]~/ follows a symmetric
stable Lévy law. The independent random variables 8 and W
are distributed, respectively, uniformly in [-7/2,7/2], and
exponentially with expectation 1. The trajectories of Q par-
ticles performing Lévy flights are obtained from this result,
combined with facilities offered by MATHEMATICA software
for uniform and exponential distributions.
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0.2 T T T T T T T
— solution to Eq. (16) with v=0
o -- solution to Eq. (8) B

Plx,t)

0.08 —— Eq. (16) with v=0

P(x,t)

(b)

FIG. 1. Concentration profiles with (full line) and without
(dashed line) a reflective barrier at x=0, for v=0, a=1.5, and K
=1, at times t=3 (a) at the left, and 10 (b) at the right. The initial
condition satisfies P(x,0)=6x0 at xo=5. For x>0, the solution to
Eq. (16) is above the solution to Eq. (8) especially between the
barrier and x,. Indeed, particles jumping to the right of x, escape
this region equally often with or without the boundary condition. In
constrast, escapes due to jumps to the left are more difficult with
than without the wall.

C. Comparisons in the diffusive limit

Checks against exact solutions for v=0, give us confi-
dence in the choice of steps i and Ar. Figure 2 shows a
comparison between the frequency distribution obtained (for
v=0) from Monte Carlo simulations with Q=10 000 and T,
=0.02 (with [“=7,), and the exact solution to Eq. (16) for
K=1 and a=1.5. In this case, exact solutions are available
for Eq. (16), and they coincide with the issues of the previ-
ously described discretization. The good fit observed illus-
trates that, in the diffusive limit, the concentration evolves
according to Eq. (16). In the case v # 0, the comparison with
numerical solutions leads to the same conclusion (see Fig. 3).

VI. CONCLUSIONS

In media where the transport of matter on the small scale
is dominated by symmetric Lévy flights, the macroscopic
evolution equation is a space-fractional advection-diffusion

021104-6



SPACE-FRACTIONAL ADVECTION-DIFFUSION AND ...

P(x,t)

FIG. 2. The solutions to Eq. (16) (full line), compared with
direct Monte Carlo simulations of Q=10 000 particles performing
Lévy flights (symbols) with a reflective barrier at x=0, for v=0,
a=1.5, and K=1. The initial condition satisfies P(x,0)=4, at xo
=5.

equation. We showed that, due to its nonlocal character, the
kernel of the space-fractional derivative has to be modified
when a boundary condition is imposed. The advection term
is as in free space. We focused here on a reflective barrier.
Small scale dynamics due to conservative forces, superim-
posed on randomly distributed impulsions (e.g., Appendix
A), results in a modified transition probability density of the
random walk “with the wall” and given by Eq. (7). The latter
equation served as a small scale definition of the barrier. It
was chosen by analogy with the above-mentioned dynamical
illustration. Furthermore, for Lévy flights with a=2 (Brown-
ian motions), it corresponds to Neumann boundary condition
d,.P(0,1)=0. Nevertheless, other models can be imagined for
the effect of a barrier at the small scale, which may imply
different kernels for the space-fractional diffusion equation.

02 . . . . | . .

P(x.t)

30

FIG. 3. The solutions to Eq. (16) (full line), compared with
direct Monte Carlo simulations of Q=10 000 particles performing
Lévy flights (symbols) with a reflective barrier at x=0, for v=1,
a=1.5, and K=1. The initial condition satisfies P()c,O):éX0 at x
=5.
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direct flight

X x’

(b) A reflecting barrier

flight hitting the barrier
irect lﬂight

-X X 'Y

FIG. 4. Trajectories of ballistic motions in a uniform force field,
with and without a reflecting barrier at x=0, with respect to the
laboratory frame. At the left: a direct flight from x’ to x. At the
right: a direct flight from x’ to x, and a flight hitting the reflective
barrier before ending at abscissa x, without any global drift.

APPENDIX A: AN ILLUSTRATION OF THE INTERPLAY
BETWEEN LEVY FLIGHTS AND A REFLECTIVE
WALL

As an example of a microscopic dynamics described by
Lévy flights, imagine that in a uniform force field with di-
rection z (orthogonal to x) and acceleration g, identical par-
ticles undergo jumps due to impulsions with uniform com-
ponent V, along z, while the x component V, is randomly
distributed. Then, in free space, the trajectories are drawn on
parabolas in (x,z) coordinates. The duration of each flight is
7,=2V,/g. We assume that 7, is small. Far away from the
wall, ballistic motions start and end with z=0, as on the left
of Fig. 4. Assuming that the random variable V_ is distributed
according to an a-stable Lévy law implies that the PDF of
the jump length L=V, 7, is of the form ¢,(L).

Particles hitting the reflective barrier at x=0 exchange no
energy: elastic shocks only change the sign of the x compo-
nent of the momentum, in the laboratory frame. Hence, each
particle following a parabolic trajectory follows, after being
bounced back by the wall, the mirror image of the portion of
parabola situated on the left side of the wall.

In a medium at rest, for a particle that is at x" at instant ¢,
the probability to jump to x during time interval (¢',¢ +dt’)
and to stay there until time ¢ has density

[@x=x") + (= x—x") ]y, (1= 1').

The above description can still be applied when impulsions
V, are computed with respect to a frame moving along x with
uniform speed v. In the laboratory frame, the x component of
the speed is V,+v, and flight durations still are 7. Particles
starting from x’ at instant t' may hit the wall at an interme-
diate instant 7;<<7; such that x"+(V,+v)7;=0. In the latter
case, v+V, is negative. Then each particle follows a para-
bolic trajectory symmetric to the free trajectory with respect
to x=0, and the velocity has x component —V,—v. Hence, the
flight ends at time ¢’ + 7 at (~v =V ) (7~ 7)=—x"=(v+V,) 7,
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which is symmetrical to x'+(v+V,)7. A particle jumping
from x’ at instant ¢', and that hits the wall without jumping
again until time ¢, is at —x' —(v+V,) 7p+v(t—1"—7¢) at instant
t. The latter expression is equal to x if and only if —(x+x")
+v(t—1")=L+2v 7. Negative values of x—uv(¢—1') are forbid-

den by the presence of the wall. Hence, in the very small 7;

limit, the transition PDF from (x',#') to (x,7) is H(x—v(z
—t’))[(pl(x—x’—v(t—t’))+<pl(—x—x'+v(t—t’))]+1/170(t—t’).

APPENDIX B: FROM EQUATION (12)
TO EQUATION (13)

From Eq. (7) we have A,(x,x")=¢(x—x")+ ¢ (—x—x"),
with ¢; even. Setting X=x"+v(t—t") yields

f P t) Ty ey pi(x — x")dx’
x' >0
=f PX-v(t—1t'),t") o (x — X)dX
X>v(t-t")
+o0
= j HX-v(t—t")P X-v(t—1t),t")ox - X)dX

+0oc
= f Ty [HP 1(X,1") @i(x — X)dX,

—00

since P* is even.
Similarly, with X’ =—x'+v(t—1") we have

f P 1) Ty o= x = x")dx’
x'>0

=J P(-X"+v(t=1t"),t")g)x - X")dX".
X' <v(t-t")

The latter expression is equal to er<U(,_,,)P*(X’—v(t
—t"),t" )@ (x—X")dX’, in turn equal to

f [(1-H)PIX —v(t—1),1") o (x—X")dX'

+o0
= f Tyenl(1 = HYP'YX' )i = X)X
Hence, Eq. (12) is equivalent to
t
P(x,t) = 5XO+U,(x)<1 - J llfTo(t')dt')
0

[Tv(t—t’)Pv
YER

+ JI H(x-v(t-1"))
t'=0

+ Tyogry(1 = H)P" 1yt ) i = y) o, (£ = 1')dy dt’

for x>0. In the right-hand side of the above expression, the
integral with respect to y is [T, P *p@](x,1), and the
double integral is equal to
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t
f o (1= )Ty (HLP 5 pp )t
t'=0

Noticing that T,_;[H(P"*r¢)] has support [v(r—1"),+0oo[
and that its mirror image is T_,,_[(1-H)(P *r¢))] proves
that Eq. (12) is equivalent to Eq. (13).

The Fourier transforms of T,_(H[P #r¢;]) and of
Tyn{(1 =P pely  are, effvli-r")
X[p(P" @) |(k,1"), and e ™ O=[(T=H)x(P" @)1k 1").

Moreover, the Laplace transform of eik’lﬂTO(t) is :ZTO(M
—ikv), and [, ey, (1—1)[Hxp(P* @) (k.1 )dr' is the
Laplace convolution of eiktl/l,.o(l‘) and [H#p(P*¢)](k,1").
Hence the Laplace-Fourier transform of

respectively,

f (1= 1V HCx = 000 = 1) Ty (HLP 50l
t'=0

is

Dyt = ko) [ (P @) (ko).

Similarly, the Laplace-Fourier transform of

f H(x=v(t = 1", (t = 1) Ty )1 = D[P ]t
1'=0

’

is
1—

B 1+ ko) (T ED(P )1t

APPENDIX C: LIMITING BEHAVIOR OF THE
RIGHT-HAND SIDE OF (14)

The right-hand side of Eq. (14) contains three terms. The
first one is [(Au—D)/A]P*(k,u) with

Au—-D

a kv)?
. _(e—llkl —I)TEI—M

1+ 7u

Let us first consider (e ™*—1)7;'. For B in [1,2], the func-
tion hg defined by hg(X)=(e*~1+X)X# is continuous,
positively valued, and bounded by, say, Mg on [0, +[. It
behaves as X*>~# near 0, as X'~# in a neighborhood of +o. For
ae(1,2], set B=1 +a l+g, with ¢ being positive but small.
Then W, g(k) = hg(|k|*) is an even continuous and bounded
function of k which belongs to L;(R) N L,(R). Hence it is the
Fourier transform of some bounded function Wy p and we
have

eI~ 1 = |IK|% + |1k (1K),

This implies that [(Au—D)/A1P"(k,u)—KV*P"(k,u) is the
Fourier transform of /'*® times the Fourier convolution of
~KV** P by w, p(x/1). The latter tends to zero with . A
similar result holds for a e (0,1], except that then v, 5 only
belongs to L,(R).
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Now [7(kv)?/(1+7u)]P*(k,u) is the Fourier-Laplace
transform of v%e™/™3”P", which tends to zero with 7,. Hence

the term with P*(k,u) in the right-hand side of Eq. (14) is

—K|k|*P*(k,u), plus a vanishingly small quantity when (I, 7)
tends to zero under the condition [%7;' =K.
For the second term we have

v Ue—t/TO P
sin kxg=——[d.(5, — 6_,)].
ik =5, 5]

B . K
—sin kxg =
A 0

Hence (B/A)sin kx, is the Fourier-Laplace transform of a

vanishingly small quantity. The third summand in the right-
hand side of Eq. (14) is

PHYSICAL REVIEW E 73, 021104 (2006)

1 —2ikve ™~

S0P Ve = 68 Terr
AT e T e

where we can see 7 times the Hilbert transform of [$,P"],
multiplied by —2ik. Then we have (see [32])

cAa L) g 2 — =
- 2ik([‘P1P ]FE)[(PIP 1= ;{*F(_ ik@P") = 2(¢,P )(0,u),
itself equal to the Fourier transform of
= sgn(®)[(,P") ) — 2(@,P") .

Hence (C/A)[ &P T#1/ ik is the Fourier-Laplace transform
of

—-U Sgn(x)[(axp)*ﬂ#’z]*ﬁ/ffo - 20(90113*) 5*L'/’70-

When [ and 7, tend to zero, the above expression tends to
—v 0,.P(x,1).
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